
Simple Modeless Help System

How to use the SimpleHelp Library
10th February, 1994 © by Graham Cox

version 1.0

This document describes the API to the SimpleHelp library, which is a set of routines
and data structures which allow you to add a simple help system to any application.
This is a resource based system, using resources either included with the application
or in a separate resource file. It is a multi-page text-only system, based upon the
ScrollDialog library, which is also required to use this library. Either modeless or modal
help dialogs can be used, though in most cases you will want a modeless one. Help is
not editable in this implementation, the help system being set up either using ResEdit,
or another program which I am planning which will be available in the future. Fig. 1.
shows a very simple help screen that can be produced with this library.

Fig. 1.

This help library supports a simple type of hypertext (hot-links), which resolves a click
in the text to a page ID, which is then installed. The presence of a hot link is detected
by means of reserving a particular style as a hypertext style. This means that the user
can recognise a hot link by the particular style, and expect to page switched to another
page when such a styled item is clicked. The tables which are used to resolve
particular words to a page ID are also defined as resources, and editing them is very
straightforward.

High Level Interface.

This library builds on the ScrollDialog library, but inevitably is not as simple to use as
that library partly because of the modelessness of the window, and partly because of
the additional data structures required. n.b. it is important that an application has only
one help window. This will normally be what you want, trying to open multiple help
windows will result in confusion and possible instability. You should keep track of the
handle referring to the help system in your main program, either as a global variable, or
as a local in your main function. In any case, it is important that you have this handle
available to determine if events should be passed to the help system for handling.
Unlike some other libraries, this window is not readily identifiable by the program as
anything special...

Creating the window:

SimHelpHdl GetNewHelpDialog(short DialogID,
short listItem,
short textItem,
short topicID);

This function creates a data structure of type SimHelpHdl which is returned to your
program. You must keep this value where you can access it from your event loop. The
parameters to the function specify the resource ID’s and item number ID’s of various
elements.

<DialogID> is the resource ID of the DLOG resource which specifies the dialog
template for the help window.

<listItem> is the ID number of the USER ITEM which will be used for the topic list.

<textItem> is the ID number of the USER ITEM which will be used for the scrolling text
panel.

<topicID> is the resource ID of the ‘TPIC’ resource which is described later, and
contains the index (topic) strings plus all of the style, indentation and page ID
information.

This function also creates the dialog window, the topic list, the scrolling text panel, and
sets up a global variable with which it can find the list item within the drawing procedure
in the library. This is necessary due to a limitation of the Macintosh and is the reason
that only one help window can be defined.

Destroying a help window:

void DisposeHelpDialog(SimHelpHdl sHelp);

Disposes of all of the data structures created above. Use once you have completely
finished with a help window. The handle becomes invalid after this call. In normal use,
you may prefer to just close the window and you can do this in the normal way with
HideWindow and show it again with ShowWindow. To get at the WindowPtr (actually
a DialogPtr) for the window, use:

DialogPtr GetHelpDialogHdl(SimHelpHdl sHelp);

You can then pass this pointer to any dialog or window manager function as required.
One note of caution- the ScrollDialog library stores data in the window’s wRefCon field,
so this field should not be used in your application.

Handling Events.

As the help window is modeless, you need to call IsDialogEvent for a newly received
event, and then DialogSelect. If this function returns TRUE, it will also have returned
the DialogPtr. You should then check this value against the one returned by
GetHelpDialogHdl. If they are the same, you can then pass the event to:

pascal Boolean ModelessHelp(SimHelpHdl sHelp,
short theItem,
EventRecord *theEvent);

This function will handle clicks in the topic list, scrollbars in both the topic list and text
panel, and clicks on the ‘Prev’ and ‘Next’ buttons. It switches pages whenever the topic
item changes, and also installs the current topic string as ParamText #1. If some other
dialog item got clicked, such as any other button that you added to the template, the
function returns FALSE. You can then do any additional dialog processing required.

Modal Help Window.

For VERY quick-and-dirty implementations, you can also provide a modal help window.
However, this is not recommended (you users will curse you that they can’t move the
window!). In this case, after you create you Help Window with GetNewHelpDialog, you
should position it and make it visible, (if it isn’t already) and then call:

void ModalHelpDialog(SimHelpHdl sHelp,short *theItem);

This will operate the dialog as a modal dialog, implementing all of the same operations
as described above for the modeless case. It keeps control until the dialog is
dismissed, which will happen if a button ID #1 is clicked, the return or enter keys are
pressed, or an enabled item is clicked that was added to the template. In this case, the
item number is returned in <theItem>.
After you have finished with the dialog, call DisposeHelpDialog as usual.

Special Requirements.

This library is designed to implement very SIMPLE help systems, that can be created in
a few minutes and added to an application similarly quickly. If you require more
sophisticated help, then perhaps it may be easier to write your own rather than trying to
adapt this one. However, the remaining functions are available, and this documentation
should allow you to use them if you wish.

OSErr BuildTopicList(SimHelpHdl sHelp,Rect *listBox);

Called internally by GetNewHelpDialog to build the list data structure from the ‘TPIC’

resource. <sHelp> is the initialised handle, which should already have the dialog
window created and initialised, and listBox is the rectangle of the list user item,
normally obtained by calling GetDItem.

Boolean HandleHelpItems(SimHelpHdl sHelp,short *theItem);

Internal function to handle clicks in the list and the ‘Prev’ and ‘Next’ buttons. This
function calls SwitchPage (described below) to change the page displayed according
to the item clicked. This function also handles the highlighting of the ‘Prev’ and ‘Next’
buttons to indicate whether the beginning or end of the topic list has been reached. It
returns TRUE if the item was handled, FALSE if it was another item.

void SwitchPage(SimHelpHdl sHelp,Cell clickCell);

Internal function to install a new page into the text panel. <clickCell> is the cell that has
been clicked on in the topic list. This function makes some other checks: If the topic
has a page ID of zero, the text panel is blanked completely. If the page ID specified by
the topic cannot be located (the resource is missing), then this function installs the
‘missing page string’ into the text panel. TDSetText in the ScrollDialog library is called
to install the text, which may be styled in accordance with the description of the
functions in that library. Additionally, the text of the topic string is copied to ParamText
#1 (^0) by this function. This allows you to add a title to the dialog window that changes
according to the page. It is up to you to make provision for this string in your dialog
template, and to make whatever calls are necessary after switching pages to update
the string on screen.

void InstallPage(SimHelpHdl sHelp,short pageID);

This function, which is called by SwitchPage, installs the given page into the text
panel. <pageID> is the resource ID of the TEXT resource which contains the text of the
help page.

pascal Boolean ModelessText(DialogPtr theDialog,
short theItem,
EventRecord *theEvent);

This function allows the modal filter in the ScrollDialog library to be used in a modeless
dialog to handle clicks in the text panel. It is used internally only, and it’s only possible
use to an application programmer is to implement modeless windows containing text
panels.
Hyperlink implementation.

Hyperlinks are implemented in a very simple way, and adding them to your help system
involves very little work, as most of the processing is handled internally for you.
Hyperlinks are identified within the help text by a particular style, or combination of
styles. This style defaults to BOLD. Clicking on a word or group of words in this style
causes the hyperlink table to be searched for that page. This table is a resource of type
‘Hypx’ which you add to your help resources. When an item in the hyperlink style is
clicked, the text is scanned forward and backwards from the clicked point to locate the
ends of the text in that style. This text is then highlighted, and checked against the
entries in the hyperlink table. If a matching piece of text is found, the page ID

associated with it is then passed to InstallPage to switch to that page. If the match
wasn’t found, nothing happens. The following routines are available to support
hyperlinks, but in most cases you will not need to use them, as all the required click
processing, etc. is handled by ModelessHelp.

void SetHyperlinkMatchStyle(SimHelpHdl sHelp,short theStyle);

This function should be called once after creating your help data structure to set the
style for the hyperlinks. All possible styles and combinations of styles are allowable. If
you do not call this function, the hyperlink style defaults to BOLD. If you do not want
hyperlinks at all, then you should set the style to an unused style, unless you are sure
that the text will not contain the default style.

short GetHypertextStyleRef(TEHandle teRec,short theStyle);

This function returns the index number of the style as it is used within the TextEdit
record for the current page. It is an internal maintenance function: you should never
need to call it.

short MatchHyperLink(Str255 *testStr,htIndexHdl pageIndex);

This function searches the hyperlink table for the page with the ID <pageIndex> for the
occurrence of the string <testStr>. If found, the function returns the page ID of the
matched page. If not found, the function returns -1. This functions looks for a resource
of type ‘Hypx’ with the given ID. You should provide this resource for all pages that
have hyperlinks in them. A ResEdit template for this resource type is provided.
MatchHyperLink uses the toolbox function EqualString to determine if the string
matched, and is not case sensitive. It also ignores diacritical marks.

short ResolveHypertextLink(SimHelpHdl sHelp,Point clickPt);

This function, which is called by ModelessHelp whenever HandleHelpItems returns
FALSE, determines if the given click occurred in the help text. If it did, it checks to see if
it occurred in a piece of text of the style defined for a hyperlink. If so, it locates the start
and end of that text, highlights it, recovers the text itself, then calls MatchHyperLink to
look up the page ID. It then returns the page ID to the caller, after unhighlighting the
text. The caller is responsible for switching to the returned page. ModelessHelp does
this by calling InstallPage.

Resource set-up.

This library depends, as usual, entirely on resources. Resources define both the
appearance and layout of the help window, with ‘DLOG’ and ‘DITL’ resources, but also
implement the entire help system, using ‘TPIC’, ‘TEXT’ and ‘styl’ resources.
Additionally, if you have hyperlinks, you require a resource of type ‘Hypx’ for every
page of text that contains a hyperlink. ResEdit templates for TPIC and Hypx resources
are supplied with this library.

Dialog Template.

Though this library is intended to be flexible, some constraints are necessary. Two user

items are required, one for the text panel and one for the topics list. In both cases, the
scrollbar for the item is created for you at runtime on the right hand side of the item.
The topic list, and the text panel, including their scrollbars, fit within the user item’s
rectangle. These items can have any ID number, because you pass these ID numbers
to GetNewHelpDialog. Three buttons should be provided- an ‘OK’ button ID #1 (if you
have a modal dialog; for modeless ones you should create a dummy item #1). The
‘Prev’ and ‘Next’ buttons MUST HAVE ID’s 2 and 3 respectively. Other than that, you
can add any other items to the dialog that you require. If you add other user items, you
should install their proc’s after the call to GetNewHelpDialog and before you make the
dialog box visible.

Text Pages.

Text pages are simply ‘TEXT’ resources, created in the normal way. ResEdit allows you
to create styled text, creating the ‘styl’ resource for you. The ScrollDialog library knows
how to handle both styled and unstyled text.

Topic Index.

This resource is the heart of the system. This uses a ‘TPIC’ resource which is defined
by this library. ResEdit templates are provided for editing this resource type. The fields
fields as displayed in ResEdit are shown in fig. 2.

 fig. 2.

<Indent> is the amount of indentation to apply to the entry. This is used to give a
hierarchical appearance if desired. 0 is flushed left, 1 is one indent space, etc. In this
version, an indent space is 10 pixels.

<Style> is the text style for the entry. 0 is plain text, 1 is bold, 2 is italic, 4 is underline, 8
is outline, 16 is shadowed. Values can be added together for combinations of styles.

 is not currently used in this version. All entries use the default font which is 9pt
Geneva.

<Page ID> is the resource ID of the TEXT resource which is the help entry for this
topic. If this is set to zero, a blank page will be displayed

<topic String> is the topic entry text which will appear in the list.

Because this resource is implemented as a series of similar elements, it is simply a
matter of using ResEdit to add or insert entries in the TPIC resource, or indeed delete
them.

If a page cannot be found, the ‘page missing string’ is displayed. This is a resource of
type ‘STR ’ which you should supply. This can be set to any suitable explanatory
message. By default, this string should have an ID of 128, but this is stored in the
SimHelpHdl data structure and may be changed after creating the dialog to whatever
ID you prefer.

Restrictions.

A TPIC resource should not contain more than 32K of data, or the list cannot manage
it. Each page of text should also not exceed 32K, or TextEdit, which is used to display
the text, will not manage it. It is very unlikely that you would have that much text on a
page- if you find you have a large amount on some pages, consider breaking it down
into sub-topics and spreading it over several entries, perhaps indented to show their
relation under a common heading. Headings can have blank pages if required.

‘Hypx’ data structure.

The ResEdit template for this resource is shown below in fig. 3.

 fig. 3.

Like the TPIC type, it is a repeating resource, with as many entries as necessary, one
for each hypertext link on the page. <Link Page ID> is the ID number of the page which
is switched to when the link is clicked. <Match String> is the text of the hyperlink. When
setting up your hyperlinks (which is best done as a last step in the creation of a help
system), it is important to make sure that the style covers only the exact extent of a
word or words that you are trying to match, or the link will not function because the
match wasn’t exact. For example, make sure that any spaces following a hyperlink
word are set to plain style, or something else. The easiest way to ensure this is to
double-click the word to select it, then apply the style.

SimHelpHdl data structure.

typedef struct
{
WindowPtr ownerWindow; // window we are displayed in
ListHandle topicList; // list of topics
short topicID; // resource ID of topic list
short indentPixels; // number of pixels per indent value
short listItemID; // ID number of the list item
short textItemID; // ID number of the text item
Cell lastSelection; // remember which one we last displayed
short missingPageID; // ID of ‘missing page’ string
short fontID; // font to use
short fontSize; // size of the font
short hyperTextIndex; // index of hypertext in styl run table
short hyperTextStyle; // style of hypertext link
short curPageResID; // resource ID of the current page
long reserved;
}
SimHelpRecord, *SimHelpPtr, **SimHelpHdl;

Note that the TDRecord used by the text panel is not available through this data
structure directly. Refer to the documentation for the ScrollDialog library if you need to
get this record. (You shouldn’t need it...)

Defaults.

#define defaultFont geneva
#define defaultFontSize 9
#define defaultIndent 10
#define defaultTextResID 128
#define helpNextButton 2
#define helpPrevButton 3
#define pageMissingStrID 128
#define topicListResType 'TPIC'
#define hyperTextIndexType 'Hypx'

Function Summary:

SimHelpHdl GetNewHelpDialog(short DialogID,
short listItem,
short textItem,
short topicID);

OSErr BuildTopicList(SimHelpHdl sHelp,Rect *listBox);
void ModalHelpDialog(SimHelpHdl sHelp,short *theItem);
void DisposeHelpDialog(SimHelpHdl sHelp);
DialogPtr GetHelpDialogHdl(SimHelpHdl sHelp);
pascal void ListDrawProc(WindowPtr theWindow,short theItem);

pascal void TopicListDef(short lMsg,
Boolean lSelect,
Rect *lRect,
Cell lCell,
short lDataOffset,
short lDataLength,
ListHandle theList);

pascal Boolean ModelessHelp(SimHelpHdl sHelp,
short theItem,
EventRecord *theEvent);

void SwitchPage(SimHelpHdl sHelp,Cell clickCell);
void InstallPage(SimHelpHdl sHelp,short pageID);

Boolean HandleHelpItems(SimHelpHdl sHelp,short *theItem);
pascal Boolean ModelessText(DialogPtr theDialog,

short theItem,
EventRecord *theEvent);

pascal Boolean TDFilter(DialogPtr theDialog,
EventRecord *theEvent,
int *itemHit);

short GetHypertextStyleRef(TEHandle teRec,short theStyle);
short ResolveHypertextLink(SimHelpHdl sHelp,Point clickPt);
short MatchHyperLink(Str255 *testStr,htIndexHdl pageIndex);
void SetHyperlinkMatchStyle(SimHelpHdl sHelp,

short theStyle);

Note that only functions declared as ‘pascal’ can be called from a pascal program. This
library is intended to be used with THINK C, and its use from a pascal program is not
possible.

Dependencies.

This library depends on the following modules:

ScrollDialog.lib -implements the text panel.
xAlert.lib - alert and dialog utilities, including positioning functions, user item installer
functions, other mundane but necessary stuff.
SneakyJump.c - this source file implements the GetFunctionHandle function which
allows xDEF’s (like the LDEF in this library...) to be buried in the code and not as a
separate resource.

How to use it in your application.

Include the SimpleHelp.lib library file in your project, and all of the libraries and files it
depends on, listed above. #include the header file (SimpleHelpTypes.h) wherever you
need to refer to a file in the library. That should be all that is needed.

Stuff.

This program is © Copyright Graham Cox, 1994. All Rights Reserved. This library and
documentation is supplies ‘as is’ and it’s fitness for any particular purpose is neither
implied nor guaranteed.

